Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The LyαTomography IMACS Survey (LATIS) has produced large 3D maps of the intergalactic medium (IGM), providing a new window on the cosmic web atz∼ 2.5. A key advantage of Lyαtomography is that it enables the discovery of overdense regions without the need to detect their galaxy members in spectroscopic surveys, circumventing possible selection biases. We use these maps to identify 37 IGM-selected overdensities as regions of strong and spatially coherent Lyαabsorption. Simulations indicate that 85% of these are protoclusters, defined as the progenitors ofz= 0 halos with massMdesc> 1014M⊙, and that nearly all of the rest are protogroups (1013.5<Mdesc/M⊙< 1014). We estimate the masses and space densities of the IGM-selected overdensities and show they are in accordance with mock surveys. We investigate the LATIS counterparts of some previously reported protoclusters, including the proto-supercluster Hyperion. We identify a new component of Hyperion beyond its previously known extent. We show that the Lyαtransmission of the galaxy density peaks within Hyperion is consistent with a simple physical model (the fluctuating Gunn–Peterson approximation), suggesting that active galactic nucleus feedback or other processes have not affected the large-scale gas ionization within this structure as a whole. The LATIS catalog represents an order-of-magnitude increase in the number of IGM-selected protogroups and protoclusters and will enable new investigations of the connections between galaxies and their large-scale environments at cosmic noon.more » « lessFree, publicly-accessible full text available July 14, 2026
- 
            Abstract We investigate the consistency of intergalactic medium (IGM) tomography and galaxy surveys as tracers of the cosmic web and protoclusters atz ∼ 2.5. We use maps from the LyαTomography IMACS Survey (LATIS), which trace the distributions of Lyman-break galaxies (LBGs) and IGM Lyαabsorption on ≃4h−1cMpc scales within the same large volume. Overall, the joint distribution of IGM absorption and LBG density is well constrained and accurately described by a simple physical model. However, we identify several exceptional locations exhibiting strong IGM absorption indicative of a massive protocluster, yet no coincident overdensity of LBGs. As discussed by Newman et al., whose results we revise using the complete LATIS survey data, these are candidate ultraviolet (UV)-dim protoclusters that may harbor distinct galaxy populations missed by rest-UV spectroscopic surveys. We present follow-up observations targeting one such candidate embedded within Antu, an extended region of IGM absorption atz= 2.685 that contains five IGM-selected protoclusters and has a total mass of 3 × 1015M⊙. Lyαemitters trace the overall structure of Antu but avoid the center of the candidate UV-dim protocluster, which also appears to contain no submillimeter-selected sources. A near-infrared spectroscopic galaxy census is needed to determine whether this large region is dominated by galaxies with reduced or absent star formation activity. This work adds to a growing and puzzling literature on discrepancies among different galaxy and IGM tracers, whose resolution promises to shed light on the early stages of environment-dependent galaxy evolution.more » « lessFree, publicly-accessible full text available July 14, 2026
- 
            Abstract We present the stellar mass–stellar metallicity relation for 3491 star-forming galaxies at 2 ≲z≲ 3 using rest-frame far-ultraviolet spectra from the LyαTomography IMACS Survey (LATIS). We fit stellar population synthesis models from the Binary Population And Spectral Synthesis code (v2.2.1) to medium-resolution (R∼ 1000) and high signal-to-noise (>30 per 100 km s−1over the wavelength range 1221–1800 Å) composite spectra of galaxies in bins of stellar mass to determine their stellar metallicity, primarily tracing Fe/H. We find a strong correlation between stellar mass and stellar metallicity, with stellar metallicity monotonically increasing with stellar mass at low masses and flattening at high masses (M*≳ 1010.3M⊙). Additionally, we compare our stellar metallicity measurements with the gas-phase oxygen abundance of galaxies at similar redshift and estimate the average [α/Fe] ∼ 0.6. Such highα-enhancement indicates that high-redshift galaxies have not yet undergone significant iron enrichment through Type Ia supernovae. Moreover, we utilize an analytic chemical evolution model to constrain the mass loading parameter of galactic winds as a function of stellar mass. We find that as the stellar mass increases, the mass loading parameter decreases. The parameter then flattens or reaches a turning point at aroundM*∼ 1010.5M⊙. Our findings may signal the onset of black-hole-driven outflows atz∼ 2.5 for galaxies withM*≳ 1010.5M⊙.more » « less
- 
            Abstract The connection between galaxies and dark matter halos is often quantified using the stellar mass–halo mass (SMHM) relation. Optical and near-infrared imaging surveys have led to a broadly consistent picture of the evolving SMHM relation based on measurements of galaxy abundances and angular correlation functions. Spectroscopic surveys atz≳ 2 can also constrain the SMHM relation via the galaxy autocorrelation function and through the cross-correlation between galaxies and Lyαabsorption measured in transverse sight lines; however, such studies are very few and have produced some unexpected or inconclusive results. We use ∼3000 spectra ofz∼ 2.5 galaxies from the LyαTomography IMACS Survey (LATIS) to measure the galaxy–galaxy and galaxy–Lyαcorrelation functions in four bins of stellar mass spanning 109.2≲M*/M⊙≲ 1010.5. Parallel analyses of the MultiDarkN-body and ASTRID hydrodynamic cosmological simulations allow us to model the correlation functions, estimate covariance matrices, and infer halo masses. We find that results of the two methods are mutually consistent and broadly accord with standard SMHM relations. This consistency demonstrates that we are able to measure and model Lyαtransmission fluctuationsδFin LATIS accurately. We also show that the galaxy–Lyαcross-correlation, a free by-product of optical spectroscopic galaxy surveys at these redshifts, can constrain halo masses with similar precision to galaxy–galaxy clustering.more » « less
- 
            Abstract We present a new method based on information theory to find the optimal number of bands required to measure the physical properties of galaxies with desired accuracy. As a proof of concept, using the recently updated COSMOS catalog (COSMOS2020), we identify the most relevant wave bands for measuring the physical properties of galaxies in a Hawaii Two-0- (H20) and UVISTA-like survey for a sample ofi< 25 AB mag galaxies. We find that with the availablei-band fluxes,r,u, IRAC/ch2, andzbands provide most of the information regarding the redshift with importance decreasing fromrband tozband. We also find that for the same sample, IRAC/ch2,Y,r, andubands are the most relevant bands in stellar-mass measurements with decreasing order of importance. Investigating the intercorrelation between the bands, we train a model to predict UVISTA observations in near-IR from H20-like observations. We find that magnitudes in theYJHbands can be simulated/predicted with an accuracy of 1σmag scatter ≲0.2 for galaxies brighter than 24 AB mag in near-IR bands. One should note that these conclusions depend on the selection criteria of the sample. For any new sample of galaxies with a different selection, these results should be remeasured. Our results suggest that in the presence of a limited number of bands, a machine-learning model trained over the population of observed galaxies with extensive spectral coverage outperforms template fitting. Such a machine-learning model maximally comprises the information acquired over available extensive surveys and breaks degeneracies in the parameter space of template fitting inevitable in the presence of a few bands.more » « less
- 
            Abstract We present the Texas Euclid Survey for Lyα(TESLA), a spectroscopic survey in the 10 deg2of the Euclid North Ecliptic Pole (NEP) field. Using TESLA, we study how the physical properties of Lyαemitters (LAEs) correlate with Lyαemission to understand the escape of Lyαemission from galaxies at redshifts of 2–3.5. We present an analysis of 43 LAEs performed in the NEP field using early data from the TESLA survey. We use Subaru Hyper Suprime-Cam imaging in thegrizybands, Spitzer/IRAC channels 1 and 2 from the Hawaii 20 deg2(H20) survey, and spectra acquired by the Visible Integral-Field Replicable Unit Spectrograph (VIRUS) on the Hobby–Eberly Telescope. We perform spectral energy distribution (SED) fitting to compute the galaxy properties of 43 LAEs, and study correlations between stellar mass, star formation rate (SFR), and dust to the Lyαrest-frame equivalent width (WLyα). We uncover marginal (1σsignificance) correlations between stellar mass andWLyα, and SFR andWLyα, with a Spearman correlation coefficient of −0. and −0. , respectively. We show that theWLyαdistribution of the 43 LAEs is consistent with being drawn from an exponential distribution with an e-folding scale ofW0= 150 Å. Once complete the TESLA survey will enable the study of ≳50,000 LAEs to explore more correlations between galaxy properties andWLyα. The large sample size will allow the construction of a predictive model forWLyαas a function of SED-derived galaxy properties, which could be used to improve Lyα-based constraints on reionization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available